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The dynamics of a THz Rydberg wavepacket
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Abstract. An optically excited Rydberg wavepacket can be generated by exciting the electron from a low-
lying state to a coherent superposition of high-lying states with a short broadband optical pulse. A special
kind of Rydberg wavepacket is generated in the case of a interaction of a weak THz half cycle pulse with
a stationary Rydberg state, called the THz wavepacket. This THz wavepacket is a coherent superposition
of the initial Rydberg state and its neighbouring states. We have investigated the time evolution of THz
wavepackets by measuring the impact of two in time delayed half cycle pulses (≈ 200 V cm−1) on the
population of a stationary (n = 40) Rydberg state in rubidium. The first half cycle pulse creates the
THz wavepacket and the second half cycle pulse probes the dynamics of the THz wavepacket. We support
our experimental data by numerically solving the Schrödinger equation and with a semi-classical picture.
Whereas an optically excited wavepacket is initially localized, a THz wavepacket is initially delocalized
and becomes localized after half a revival time.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) –
03.65.Ge Solutions of wave equations: bound states

1 Introduction

In recent years it has become possible to generate very
short freely propagating electrical pulses of half a cycle
with a frequency spectrum in the THz regime, often re-
ferred to as THz half cycle pulses (HCP) [1–3]. In sev-
eral experiments the influence of such a HCP on ioniza-
tion of Rydberg atoms has been investigated [4–7]. If the
pulse duration of these HCP is very short compared to the
Kepler roundtrip time of a Rydberg electron, the impact
of a HCP can be described as a momentum kick

∆p = −
∫

F(t)dt (1)

to the Rydberg electron where F(t) is the electric field
of the HCP [6,7]. In the limit that the pulse is much
shorter than the orbit time the resulting energy transfer
is given by

∆E = p0 ·∆p+∆p2/2, (2)

where p0 is the initial momentum of the electron. The net
energy change will thus depend on the initial momentum
of the electron and the direction of the kick.

HCP have been used to probe the dynamics of a
Rydberg wavepacket [8–11]. An optically excited Rydberg
wavepacket can be generated by exciting the electron from
a low-lying atomic state to a coherent superposition of
n states with a short optical pulse [12–15]. In order to
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conserve momentum, optical excitation takes place only
near the nucleus; a radially localized Rydberg wavepacket
is created [13]. The localized Rydberg wavepacket os-
cillates in and out about the nucleus with an oscilla-
tion period matching the classical period of an electron
in a Kepler orbit. The Kepler period is given by the
inverse of the energy spacing between the excited n-
manifolds (τKepler = 2πn3). The long-term evolution of
the wavepacket is more complex. The Rydberg states are
nearly equally spaced. The deviation from the harmonic
spacing causes the wavepacket to spread slowly and in
course of time the wavepacket is no longer localized. The
spreading is smooth along the orbit until the tail of the
wavepacket meets with its head. At this point a new in-
terference pattern begins to form and small wavepackets
emerge. This fractional periodicity is called fractional re-
vival. The quadratic regularity of the spacing difference
results in a rephasing of the states and the wavepacket
becomes localized at τrevival = (n/3)τKepler. At τrevival/2
the odd and even states are in phase and the wavepacket
is broken up into two discrete wavepacket parts. Only a
small fraction of the population is excited from the ini-
tial state (n = i) towards higher lying Rydberg states (n),
where n is the principal quantum number

Ψ = aiψi +
∑
n

bnψn;
∑
n

|bn|2 � 1. (3)

After the excitation the remaining initial state amplitude
(aiψi) is ignored.

A coherent superposition of Rydberg states can also
be generated with a HCP [16–18]. In the case of a strong
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Fig. 1. Schematic illustration of the experiment. (a) Rubid-
ium atoms are laser excited in a static electric field from the
ground state to the lower, red, Stark states of the n = 40 man-
ifold; the initial Rydberg state. (b) Two HCP kick against the
Rydberg electron and change the energy of the electron. The
first HCP creates the THz wavepacket and the second probes
the dynamics. The delay between the HCP is varied in the
experiment. (c) The electron population is redistributed over
neighbouring manifolds by the HCP. (d) After the exposure to
the THz radiation the final state distribution of the Rydberg
atoms was measured by state selective field ionization.

HCP, where the term p2 in equation (2) dominates, the
Rydberg wavepacket is generated by exciting the electron
population from a initial low lying state to a superposi-
tion of high-lying n states. For small momentum kicks, i.e.
weak HCP, the second term ∆p2/2 in equation (2) can be
neglected. Starting from the initial Rydberg state ni the
net energy transfer (∆E) can be both positive (n > ni)
and negative (n < ni), and the electron population will
be spread over neighbouring manifolds, generating a spe-
cial kind of Rydberg wavepacket, which we will call THz
wavepacket. This THz Rydberg wavepacket is a superpo-
sition of the initial state and its neighbouring states

Ψ =
∑
n

anψn;
∑
n

|an|2 = 1. (4)

Unlike a short optical pulse, the HCP changes the energy
of a free electron. Therefore, the electron can increase (or
decrease) its energy at any distance from the nucleus. Ex-
citation happens over the full orbit; a delocalized Rydberg
wavepacket is created.

We want to investigate the dynamics of this THz
wavepackets by comparing the time evolution of the pop-
ulation transferred in the lower-lying neighbouring mani-
folds (∆E < 0) with the time evolution of the population
in the higher-lying neighbouring manifolds (∆E > 0) af-
ter exposure to a probe HCP. We describe the time evo-
lution of a THz Rydberg wavepacket with a semi-classical
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Fig. 2. Schematic representation of the experimental setup
(for details see text).

picture. A schematic representation of the experiment is
given in Figure 1. Rubidium atoms are excited in a static
electric field from the ground state to the lower, red, Stark
states of manifold n = 40 with a nanosecond dye laser.
Two HCP are generated by illuminating biased GaAs
wafers with a femtosecond Ti:sapphire laser. The first
HCP creates a wavepacket and the second HCP is used
to probe the dynamics of the wavepacket. The two pulses
are delayed in time by a variable delay line in the opti-
cal beam. The interaction with the two HCP will change
the energy of the electron hence the electron population
will redistribute over the neighbouring manifolds. The fi-
nal state distribution of the Rydberg atoms as a function
of the delay between the two HCP is measured by state
selective field ionization. The experimental setup is de-
scribed in Section 2. The final state distribution is also cal-
culated by numerical integration of the Schrödinger equa-
tion. The theoretical and experimental data are presented
and compared in Section 3. The results are explained with
a semi-classical interpretation in Section 4.

2 Experimental setup

The dynamics of a THz wavepacket are investigated by
measuring the influence of two HCP on highly excited
Rydberg atoms is investigated as a function of the delay
between the two HCP. In Figure 2 the experimental setup
is shown. Inside a vacuum chamber rubidium was evapo-
rated in a resistively heated oven. Highly excited Rydberg
atoms (n = 40) were created in a static electric field of
10 V cm−1 by two photon excitation (λ = 594.870 nm)
of ground-state rubidium atoms using a Nd:YAG pumped
dye laser. The static electric field was strong enough to
mix the 41d state with the lower, red, Stark states of
the n = 40 manifold, but too weak to reach the n-
mixing regime. Two HCP were created by illuminating
biased (≈ 1 kV) GaAs wafers with ≈ 75 fs, 795 nm pulses
(≈ 0.1 mJ) from a Ti:sapphire laser. The electric field
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Fig. 3. Measured SSFI traces (straight line) at two different
delays between the HCP. In (a) the initial population is trans-
ferred to higher-lying, neighbouring Rydberg states, and in (b)
to lower-lying, neighbouring Rydberg states. The dotted lines
are the Gaussian profiles fitted to the relevant states involved
in the wavepacket.

of the two HCP in the interaction region, separated by
50 cm from the GaAs wafers, was estimated to be 100–
300 V cm−1. The polarization of the HCP was chosen par-
allel to the static electric field. The polarity of the HCP
(either in the +z direction or −z direction) could be al-
tered by changing the polarity of the bias over the wafers.
The two pulses were delayed in time by a variable de-
lay line in the optical beam. A third, unbiased, GaAs
wafer was used as a beamsplitter to overlap the two HCP
in space. The HCP were polarized perpendicular to the
plane of incidence (s polarization). The point of overlap
of the two HCP in time was determined within 0.5 mm
exactly by colinear overlap of the two optical femtosecond
beams. Fringes in the optical beams indicated the overlap
in time. After the exposure to the THz radiation the fi-
nal state distribution of the Rydberg atoms was measured
by state selective field ionization [19]. In time the electric
field was ramped ≈ 200 V cm−1 in 3 µs, such that the
higher Rydberg states would ionize earlier in time than
the lower Rydberg states. With state selective field ion-
ization the population in every state could be measured
separately. In the SSFI trace the peaks, representing sin-
gle manifolds, overlapped somewhat, see Figure 3. In this
figure the SSFI traces are shown for two different delays
between the HCP. In Figure 3a the initial population is
transferred to higher-lying, neighbouring Rydberg states,
and in Figure 3b the initial population is transferred to
lower-lying, neighbouring Rydberg states. The population
of each state was determined by fitting a superposition of
Gaussian profiles to the measured SSFI trace, see the dot-
ted lines in Figure 3.

The pulse shape of the two HCP after the GaAs
beamsplitter was measured by an electro-optical sampling
method, (see Fig. 4). The electro-optical sampling method

pellicle
Ti:Sapphire
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l/4
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diaphragma
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HV

GaAs
HV

GaAs
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Fig. 4. Illustration of the electro-optical sampling method.
The reflected and transmitted beam were detected separately.

has been described in [20–22]. Briefly, a linearly polar-
ized femtosecond probe pulse, derived from the femtosec-
ond laser propagated collinear with the HCP pulse inside
a electro-optic crystal (ZnTe) and probed the change in
the index of refraction induced by the electric field of the
HCP. In our experiment, the probe pulse was send into
the electro-optic crystal from the back surface with re-
spect to the direction of the incoming HCP. The duration
of the probe pulse was shorter than the duration of the
HCP pulse; therefore the temporal shape of the THz pulse
could be measured by changing the relative delay between
the THz pulse and the probe pulse while monitoring the
phase retardation of the probe beam. The phase retarda-
tion was converted into an intensity modulation by pass-
ing the probe beam through a polarizer and detecting the
transmission with a photodiode. The photodiode signal
was integrated and averaged with a boxcar. To get a de-
cent signal-to-noise ratio the data were averaged over ten
scans. In Figure 5 the HCP shapes after the GaAs beam-
splitter are shown for both the transmitted HCP (Fig. 5a)
and the reflected HCP (Fig. 5b). Two peaks appeared,
instead of one HCP. The small peak delayed by 11.8 ps
with respect to the main peak, was caused by internal re-
flection of the HCP in the GaAs beamsplitter. The index
of refraction at THz frequencies in GaAs is 3.54 and the
wafer thickness was 0.5 mm, predicting a delay of 11.9 ps.
The polarity of the bias over the GaAs wafers, which gen-
erate the HCP were equal for both HCP. So the polarity of
the two pulses before the GaAs beamsplitter were equal.
But the polarity of the external reflection of the main
HCP after the GaAs wafer was opposite to the polarity
of the other three pulses. The external reflection of the
HCP had flipped polarity on the GaAs beamsplitter as
the Fresnel equations predict for s polarized light Gaus-
sian pulse could be nicely fitted to both the main reflected
and transmitted HCP. The FWHM of the reflected and
transmitted HCP were respectively 0.59 ps and 0.54 ps.
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Fig. 5. HCP shape, measured after the GaAs beamsplitter,
both (a) the reflected and (b) the transmitted HCP. A Gaus-
sian pulse shape could be nicely fitted to both HCP (thick
lines).

3 Results and discussion

3.1 Experimental results

We first discuss the population remaining in the initial
state after exposure to THz radiation as a function of the
delay between the two HCP. The experiment was done in a
static electric field of 10 V cm−1, with as initial state a red
Stark state of the n = 40 manifold and in zero field, with
the 41d state as initial state. The results of both experi-
ments are compared. In Figure 6 the fraction of the total
population remaining in the initial state as a function of
the delay between the two HCP is shown for parallel polar-
ity between the pump and probe HCP. The results for the
experiment performed in a static electric field are plotted
in Figure 6a and for the experiment performed in zero field
in Figure 6b. In the case of opposite polarity between the
pump and probe HCP, the fast oscillations have a phase
shift of π, these results are not shown. Fast oscillations ap-
pear with a period of respectively 10 ps in Figure 6a and
30 ps in Figure 6b. In the experiment performed in a static
electric field these fast oscillations equal the Kepler orbit
time of the wavepacket; τKepler = 9.7 ps. In the case of the
field-free experiment the beat frequency is an average of
the transition frequencies from the initial d state to neigh-
bouring p and f states (∆l = ±1); 39f (1/22.2 ps), 42p
(1/39.2 ps), 40f (1/31.8 ps), 43p (1/16.8 ps). The field-
free result agrees with earlier observations [23]. In [23]
the experiment was performed with strong HCP, so first

Fig. 6. The population in the initial state after exposure to
THz radiation is shown as a function of the delay between the
two HCP for (a) in a static electric field and (b) in zero field.
The polarity of the two pulses was chosen parallel.
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Fig. 7. The population of the neighbouring manifolds after the
exposure of the THz radiation is presented as a function of the
delay between the two HCP for (a) ∆n = ±1 and (b)∆n = ±2.
The polarity of the two pulses was chosen parallel. The states
are plotted with an offset. Actually the plots overlap. The left
axis shows the population for the higher-lying state and the
right axis shows the population for the lower-lying state.

order perturbation theory did not hold. In our case, for
weak HCP only transitions are allowed when ∆l = ±1.
For weak HCP the first-order perturbation theory holds.
In Figure 6a, the results of the experiment performed in a
static electric field, another effect is visible; the fast oscilla-
tions decay and revive again over a period of about 123 ps.
This period agrees with the revival time of the wavepacket
(τrevival = 130 ps). For the static-electric-field experiment
also the population of ∆n = ±1 and ∆n = ±2 have been
measured as a function of the delay between the two HCP.
These populations are respectively plotted in Figure 7a for
∆n = ±1 and Figure 7b for ∆n = ±2, again for parallel
polarity between the pump and probe HCP. Fast oscilla-
tions, which equal the Kepler orbit time of the electron
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are visible. For ∆n = ±1 these fast oscillations are out of
phase at τrevival/2. For ∆n = ±2 the oscillations are in
phase at zero delay, then get out of phase at τrevival/2 and
again in phase at τrevival.

3.2 Theoretical description

The final state distribution for the static-electric-field
case was also calculated by numerical integration of the
Schrödinger equation. Starting in a stationary, highly ex-
cited Rydberg Stark state, two, in time delayed, HCP
drive the initial state population to neighbouring states.
The population redistribution as a function of the de-
lay can be calculated by numerical integration of the
Schrödinger equation:

~
∂

∂t
Ψ(t) = −iHΨ(t). (5)

To simplify the problem we numerically solved equa-
tion (5) for the case of a hydrogen atom. In that case
the Hamiltonian, H, in a perturbative electric field is:

H = −p
2

2
− 1
r

+ F (t)z. (6)

The perturbation F (t) is given by the electric field of the
two HCP. We assume the HCP to be Gaussian in shape
and a FWHM of 0.57 ps. Incorporating the observed echo
at 11.7 ps (Fig. 5) in the theory might further improve
the model but this refinement is beyond the scope of this
paper.

The lower, red, Stark states in a manifold couple with
the corresponding Stark states in the neighbouring man-
ifolds, i.e. the lowest Stark state of a manifold couples
only to the lowest Stark states of the neighbouring mani-
folds. Applying the approximation that initially one Stark
state is excited will reduce the amount of states involved
in the wavefunction (

∑
cnψn) to the amount of manifolds

involved. The basis states ψn are independent. This re-
quirement produces coupled but separated equations for
each cn, which can be written in matrix form:

~
d
dt

cn = −iĤcn. (7)

The diagonal elements of the matrix Ĥ are given by the
eigenenergies in zero field and the coupling to the pertur-
bative electric field, the Stark shift ∆n, multiplied by the
perturbative electric field

Ĥn,n =
1

2n2
+∆n,kF (t); ∆n,k =

3
2
nk. (8)

The off-diagonal elements describe the coupling between
the neighbouring states and are given by the semiclas-
sical approximation for transitions between hydrogenic
states [24]

Ĥn,n′ =
2

3∆n
J ′∆n(∆n)

√
∆n,k∆n′,k′F (t), (9)
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Fig. 8. Calculated populations shown as a function of the
delay. In (a) the initial state population is shown, in (b) the
population of ∆n = ±1 and in (c) the population of ∆n = ±2.
The polarity was chosen parallel. The higher and lower-lying
state in (b) and (c) are plotted with an offset. Actually the plots
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with J ′∆n the derivative of the Bessel function of the first
kind, order ∆n,∆n = n − n′. The ratio of the coupling
constant for ∆n = 1 is ≈ 0.2 and for ∆n = 2 this is ≈ 0.07.
The ratio continues to fall for increasing ∆n.

This first-order differential equation (7) is solved nu-
merically by the fourth-order Runga Kutta integration
method. Suppose the initial state in the experiment is
a single Rydberg Stark state, then as initial conditions
a single amplitude ci is put equal to one and all other
amplitudes cn6=i are put to zero.

The theoretical results are shown in Figure 8. The po-
larity between the two HCP was chosen parallel. The elec-
tric field of the two HCP was chosen at 200 V cm−1 to get
the best quantitative agreement. The population of the
initial state, the lowest Stark state of n = 40, the popu-
lation of the lowest Stark states of the ∆n = ±1 states
and of the ∆n = ±2 states are shown respectively in Fig-
ures 8a–8c as a function of the delay between the two
HCP. In the calculation also the lowest Stark states of
the ∆n = ±3 states are included to avoid boundary ef-
fects. Both in the experiment and in the calculation we
found less than 4% population in the ∆n = ±3 states.
In agreement with our experimental data we observe fast
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oscillations (9.8 ps) equal to the Kepler orbit period. The
fast oscillations in the initial state decay and revive again
over the revival time of the wavepacket (τrevival ≈ 125 ps).
At zero delay the oscillations in ∆n = ±1 are in phase,
near τrevival/2 these oscillations are out of phase and get
in phase again near one revival time. These results are
in agreement with the experimental observations. The os-
cillations in ∆n = ±2 are in phase at zero delay and at
integer multiples of τrevival/2, in between the oscillations
are out of phase. In the final population of ∆n = ±2 fast
oscillations appear with a periodicity of half the Kepler pe-
riod (τKepler/2), indicating direct, one photon, transition
from the initial state to the ∆n = ±2 states, besides the
two transition steps of ∆n = ±1. These direct ∆n = ±2
transitions are also the reason that the oscillations in the
∆n = ±2 states are in phase at half the revival time of
the wavepacket. This does not agree with the experimen-
tal results where we observe only ∆n = ±1 transitions. In
the experimental results no indication is found for direct,
one photon, transition to the ∆n = ±2 states. The signal
to noise ratio of the experiment is not sufficient to exclude
any ∆n = 2 one-photon transitions, but the theory clearly
overestimates the contribution of this process.

In the calculations two equal HCP were used, while in
the experiment the HCP might not be equal, since they
were generated from different GaAs wafers. Taking this
into account in the calculation, different pulse duration
and electric field strength, did not improve the agreement.
Small differences between the two HCP hardly affected the
theoretical results, while for large differences the out and
in phase time in ∆n = ±2 became irregular. This tells us,
that our two HCP are almost equal in shape. It does not
give us an explanation for the difference between theory
and experiment. The Fourier transform of the Gaussian
HCP shows that the frequencies of both the ∆n = ±1
transitions and ∆n = ±2 transitions are present, indicat-
ing that both transitions should be allowed. Maybe the
coupling constant for ∆n = ±2 transitions is overesti-
mated in the theoretical calculations. We compared the
approximated matrix elements of equation (9) with ex-
actly calculated matrix elements. First the eigenstates of
rubidium in a static electric field of 10 V cm−1 for m = 0
where determined. Next the coupling constants were cal-
culated between every eigenstate. The ratios of the exactly
calculated coupling constants to the coupling constant of
∆n = 0 are the same as our simplified equation (9) pre-
dicts, namely ≈ 0.2 for ∆n = ±1 transitions and ≈ 0.07 for
∆n = ±2 transitions. This exact calculation also showed
that lower, red, Stark states couple with the correspond-
ing Stark states in the neighbouring manifolds, as already
mentioned in the beginning of this section. In the experi-
ment the bandwidth of the dye laser was not small enough
to excite one Stark state, probably several Stark states
were excited. Taking this into account in our theoretical
calculation by defining the final state populations as a
summation over several Stark states, did not improve the
agreement. In conclusion our experimental and theoretical
results agree, except for the direct ∆n = ±2 transitions.

DDDDt = 0

DDDDt = ½ttttKepler

DDDDEDDDDE 1 122

DDDDt =½ttttrevival

DDDDt =½ttttrevival+½ttttKepler

++

+ +

Fig. 9. Semi-classical picture describing the experiment. The
initial state, a standing wave, is described by two counter prop-
agating waves, illustrated by the white and black part. The
situation is shown at four different delay times, respectively
at delay = 0 s, delay = τKepler/2, delay = τrevival/2 and
delay = τrevival/2 + τKepler/2. The influence of the first half
cycle on each wave is shown by the small black arrow, the in-
fluence of the second HCP by the white arrow. The big black
arrow shows the net energy change.

The importance of these transitions as indicated by the
theory is not confirmed in the experiment.

4 Semi-classical interpretation

4.1 Semi-classical picture

In this section we present an intuitive semi-classical pic-
ture to explain the measured and calculated results, il-
lustrated in Figure 9. Let us describe the initial Rydberg
state, a standing wave, as two counter propagating waves.
In Figure 9 these two propagating waves, moving along the
orbital, are illustrated by the white and black part. The
black fraction represents the wave moving towards the nu-
cleus and the white represents the outgoing wave. Suppose
the direction of the momentum kick of the first HCP in-
creases the energy of the white wave. Then the first HCP
will decrease the energy of the other, black wave, because
for this wave the momentum is opposite in sign. The ef-
fect of the first HCP is shown by the small black arrows. If
the second HCP interacts with the atom at the same time
as the first HCP (delay = 0 s) and has the same polar-
ity, then the second HCP will have the same effect on the
electron, illustrated by the white arrows. So it will also
increase the energy of the white wave and decrease the
energy of the black wave. The net energy change, shown
by the big black arrows will be equal in magnitude for
both waves, but opposite in sign. This will result in elec-
tron transitions from the initial manifold to both higher
and lower n-manifolds. Let us now consider what happens
if the second HCP arrives half a Kepler roundtrip time
later than the first HCP (delay = τKepler/2). The initial
momentum of the electron will have changed sign in the
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meantime and the effect of the second HCP will be oppo-
site to the effect of the first HCP. The kick of the second
HCP cancels the energy change caused by the kick of the
first HCP. So the energy change of both waves will be zero:
the electrons stay in their initial state. When the delay is
equal to one Kepler roundtrip time the situation will be
almost equal again to zero delay. The electrons will move
to both higher and lower states. In summary, if the delay
between the HCP is small we will notice that respectively
the electrons move to both higher and lower states and
half a Kepler roundtrip time later they will stay in the
initial state. The oscillations of the final population of the
higher and lower states. This is what we also observe in
our data (Figs. 6a and 7).

If the delay between the two pulses equals half the
revival time of a wavepacket, the two initially counter-
propagating waves are now co-propagating, i.e. the waves
are at the same side of the orbit and propagate in the
same direction. So their momentum will be equal. As a
result the second HCP will have the same effect on both
waves. Suppose that the second HCP increases the energy
of the waves, then the net energy after exposure to both
HCP will be increased for the white wave and for the black
wave the energy change caused by the first HCP will be
cancelled by the second HCP. A fraction of the population
will move to higher manifolds and the rest will stay in the
initial state. If the second half cycle pulse arrives half a
revival time plus half a Kepler roundtrip time later than
the first HCP (delay = τrevival/2 + τKepler/2) the second
HCP will decrease the energy of both waves, because the
initial momentum of the electrons has changed sign again.
The net energy gain after exposure to both HCP will be
zero for the white wave while decreased for the black wave.
Again a part of the population stays in the initial state
and the rest will move to lower manifolds. In summary,
near τrevival/2 the population in the initial state remains
constant and a part of the population will move alternat-
ing to higher and lower manifolds. The oscillations in the
final population of the higher and lower n-states are out of
phase. This behavior we see in our data (Figs. 6a and 7).

The same semi-classical interpretation holds for an-
tiparallel polarity of the HCP as well. The only difference
is that for the same momentum of the electron the effect
of the second HCP will be opposite to the effect of the
first HCP. This will lead to a phase shift of π in the fast
oscillations.

4.2 Calculation

We determined the expectation value of the z-coordinate
(direction parallel to the electric field) of the wavepacket
in time to support our semi-classical interpretation. When
the wavepacket parts are counter propagating, i.e. the
wavepacket is delocalized, we expect to see an aver-
aged, constant z-coordinate. When the wavepacket parts
are co-propagating, i.e. the wavepacket is localized, the
z-coordinate will oscillate between its extremes. The
parabolic eigenfunctions ψ are, as determined by Bethe
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Fig. 10. The expectation value of the z-coordinate (direction
parallel to the electric field) is plotted as a function of time.
The maximum of the HCP is at zero ps. As can be seen the
wavepacket is initially delocalized, no oscillations, and after
τrevival/2 localized.

and Salpeter [25]

ψn1,n2,m =
e±imϕ

√
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2
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1
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× Lmn1+m(εξ)Lmn2+m(εη) (10)
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2
, n2 =

n− k − 1− |m|
2

· (11)

The amplitudes of the eigenstates after the first HCP kick,
the kick which generates the wavepacket, can be deter-
mined in time as mentioned in Section 3.2 by numerical
integration of the Schrödinger equation, with one differ-
ence: the perturbation F (t) is given by the electric field of
one HCP.

Because of computation problems at high n-manifolds,
the calculation is done around n = 25. The electric field
F (t) and the pulse duration of the HCP have to be scaled.
To stay in the impulsive regime the ratio of the pulse du-
ration of the HCP to the Kepler round trip time has to
be constant. The electric field of the HCP is scaled to
ensure an equivalent amount of population transferred
to ∆n. It turns out that the electric field of the HCP
has to be proportional to n−4

τHCP ∝ τKepler ∝ n3 (12)

FHCP ∝ Fionization ∝ n−4. (13)

So the electric field F and the pulse duration used in
the calculation are respectively 1311 V cm−1 instead of
200 V cm−1 and 0.138 ps instead of 0.57 ps. The eigen-
states involved are the lowest Stark states of the manifolds
n = 23−28 instead of manifolds n = 37−43.

The expectation value of the z-coordinate is plotted
in Figure 10 as the wavepacket evolves in time. The max-
imum of the HCP is at 0 ps. At negative times the ex-
pectation value of the z-coordinate of the initial, station-
ary state is constant in time and of the order (3/2)n2a0,
which we would expect for a standing wave. After expo-
sure to THz radiation, at positive times a wavepacket is
formed. The initially standing wave can be described as
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Fig. 11. The wavepacket is plotted
at specific timepoints, denoted in Fig-
ure 9 with the letters a–e, to illus-
trate the dynamics of the wavepacket.
In figure a the standing wave is plot-
ted. The population is distributed
over the whole orbital. In (b), dur-
ing the interaction of the HCP with
the Rydberg atom, the population is
still distributed over the whole orbit
(delocalized), which one can describe
as two counter-propagating waves. In
(c) and (d) the two initially counter-
propagating waves are co-propagating.
The population is localized on the orbit.
In (c) the two co-propagating waves are
at the outer turning point. In (d) the
two co-propagating waves are at the in-
ner turning point. In (e) the two for-
mer co-propagating waves are counter-
propagating again and the population
is distributed over the whole orbit.

two counter-propagating waves. The wavepacket will be
delocalized over the orbit and therefore the expectation
value of the z is still constant in time. As we approach
τrevival/2 the two initially counter-propagating wavepacket
parts are now co-propagating, the wavepacket is local-
ized on the orbit. The z-coordinate starts to oscillate,
with an oscillation period equal to the Kepler orbit time
(τKepler = 2.37 ps for n = 25). The oscillation amplitude
increases until it reaches its maximum at τrevival/2, where
the population is fully localized. The localized wavepacket
moves in and out the core region, causing large oscillations
in the z-coordinate. Hereafter the oscillations decay as the
wavepacket gets slowly delocalized. The expectation value
of the z-coordinate is constant again at one revival time
(τrevival = 19.5 ps). The wavepacket is fully delocalized
again. In Figure 11 we plotted the wavepacket at specific
times, denoted in Figure 10 with the letters a–e, to make
the dynamics of the wavepacket visible. The population(
Ψ2
)

is plotted in the xz-plane (z-direction parallel to the
electric field) after integration over the y coordinate. The
wavepacket is symmetric in the xy-plane (m = 0).

5 Summary

We investigated the dynamics of a THz wavepacket both
experimentally and theoretically. Such a THz Rydberg
wavepacket differs from conventional Rydberg wavepack-
ets. In a THz wavepacket the initial state, out of which
the coherent superposition of wavepacket states is pop-
ulated, is part of the wavepacket. In the experiment a
delayed, THz probe pulse, monitors the dynamics of the
wavepacket. We found oscillations in the final popula-
tion as a function of the delay between the two HCP.
In the presence of a small static electric field these os-
cillations match the Kepler orbit frequency, while in ab-
sence of a static electric field the oscillation frequency
is given by the dipole allowed transitions from the ini-
tial state. The calculations are performed by numerical
integration on the Schrödinger equation. These calcula-
tions confirm our observations on the population redistri-
bution, in particular when the population oscillations of
the different Rydberg states are in and out of phase. Os-
cillations with a frequency matching a direct ∆n = ±2
transition are predicted by theory but not found in the



A. Wetzels et al.: The dynamics of a THz Rydberg wavepacket 165

experiment. We have no explanation for this discrepancy.
Further insight in the dynamics is obtained by a semi-
classical picture, using that a standing wave can be de-
scribed by two counter-propagating waves. We supported
our semi-classical picture by calculating the expectation
value of the z-coordinate as the wavepacket evolves in
time and by plotting the wavepacket at specific time
points. The short-term evolution, the Kepler orbit mo-
tion, and the long-term evolution, the decay and revival
of the wavepacket, of a THz wavepacket are comparable
with the short-term and long-term evolution with a opti-
cal wavepacket. The large difference is that an optically
excited wavepacket is initially localized, whereas a THz
wavepacket is initially delocalized and becomes localized
after τrevival/2.
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